张传林

发布日期:2022-04-24      浏览次数:6685

姓名:张传林性别:
学历:博士研究生职称:教授
电话:Email:clzhang@shiep.edu.cn
办公地址:计电楼A204
个人简介:

张传林,博士,教授,2008年毕业于东南大学数学学院信息与计算科学专业获理学学士,2014年毕业于东南大学自动化学院控制理论与控制工程专业获工学博士。20119-20129月在美国德州大学圣安东尼奥分校电气与计算机工程系访问交流;20162-20172月新加坡南洋理工大学能源研究所访问学者;20173-20182月新加坡国立大学先进机器人研究中心访问学者。

主要研究方向为非线性控制理论及其在分布式发电系统、智能自主系统等领域的应用。在国际上首次提出了复杂非线性系统的一类非递归控制理论方法,并成功应用在柔性机械臂以及交/直流微电网等多个典型工程对象中,创新成果得到了国际同行的普遍认可与正面引用。目前发表SCI检索期刊论文70余篇,其中SCI一、二区论文40余篇,IEEE Transactions系列期刊论文40余篇,先后有4篇论文入选ESI高被引目录。主持国家自然科学基金青年基金与面上项目、上海市青年科技启明星、扬帆计划、晨光计划、上海市自然科学基金等多项科研项目。现任国家级一流本科课程《自动控制原理》负责人,IEEE PES 智能电网与新技术(中国)智慧物联与控制技术分委会常务理事,上海市自动化学会常务理事,上海市电子电器协会理事暨学术委员会副主任,IEEE高级会员,中国自动化学会青年工作委员会委员,国际期刊《TIMC》副编辑等。
研究方向:

理论方向: 非线性控制理论,智能控制理论;

应用方向: 智能微电网先进控制,智能电力机器人等。
主讲课程:
自动控制原理,发电自动化概论,人工智能、人工智能及电力系统应用等。
科研成果:

Ø  专著

[1]    Zhang C, Yang J. Nonrecursive Control Design for Nonlinear Systems: Theory and Applications, CRC Press, Roca Boton, London, 2023.

Ø  代表论文

[2]    Dong X, Mao J, Yan Y, Zhang C*, Yang J. Generalized dynamic predictive control for nonlinear systems subject to mismatched disturbances with application to PMSM drives, IEEE Transactions on Industrial Electronics, 2024, 71(1): 954-964.

[3]    Dong X, Zhang C*, Yang T, Yang J. Nonsmooth dynamic tracking control for nonlinear systems with mismatched disturbances: Algorithm and practice, IEEE Transactions on Industrial Electronics, 2023, 70(4): 4048-4057.

[4]    Zhang C, Yang J*, Fridman L, Yan Y, Li S. Semi-global finite-time trajectory tracking realization for disturbed nonlinear systems viahigher-order sliding modes. IEEE Transactions on Automatic Control, 2020, 60(5): 2185-2191.

[5]    Zhang C, Wen C, Wang L*. Nonsmooth decentralized stabilization for interconnected systems subject to strongly coupled uncertain interactions. IEEE Transactions on Systems, Man and Cybernetics: Systems. 2020, 50(7): 2685-2692.

[6]    Zhang C, Yang J*, Wen C, Wang L, Li, S. Realization of exact tracking control for nonlinear systems via a non-recursive dynamic design. IEEE Transactions on Systems, Man and Cybernetics: Systems. 2020, 50(2):577-589.

[7]    Zhang C, Yan Y, Yu H*. Global dynamic non-recursive realization of decentralized nonsmooth exact tracking for large-scale interconnected nonlinear systems. IEEE Transactions on Cybernetics, 2019, 49(9): 3521-3531.

[8]    Li T, Yang J*, Li S, Wen C, Zhang C. Global adaptive finite-time stabilization of uncertain time-varying p-normal nonlinear systems without homogeneous growth nonlinearity restriction. IEEE Transactions on Automatic Control, 2019, 64(11):4637-4644.

[9]    Zhou L, Zhang C*, Cui C, Lin P, Dong X. A DRL-based parameters self configuration mechanism of nonsmooth control for autonomous DC microgrids feeding constant power loads, IEEE Journal of Selecting and Emerging Topics in Power Electronics, 2024, 12(1): 641-650.

[10]Cui C, Dong Y, Dong X, Zhang C*, Amer Ghais. Adaptive horizon seeking for generalized predictive control via deep reinforcement learning with application to dc/dc converters, IEEE Transactions on Circuit and Systems I: Regular Papers, DOI: 10.1109/TCSI.2023.3325590.

[11]Lang J, Zhang C*, Xia F, Wang G, Wang X. Self-disciplined nonsmooth coordination control for battery energy storage system in autonomous DC microgrids towards large-signal stability. IEEE Transactions on Smart Grid, 2023, 14(2):928-938.

[12]Zhang C, Li M, Zhou L, Cui C*, Xu L. A variable self-tuning horizon mechanism for generalized dynamic predictive control on DC/DC boost converters feeding CPLs. IEEE Journal of Selecting and Emerging Topics in Power Electronics, 2023, 11(2): 1650-1660.

[13]Huangfu B, Cui C*, Zhang C, Xu L. Learning-based optimal large-signal stabilization for DC/DC boost converters feeding CPLs via deep reinforcement learning. IEEE Journal of Selecting and Emerging Topics in Power Electronics, 2023, 11(6): 5592-5601.

[14]Cui C, Yang T, Dai Y, Zhang C*, Xu Q. Implementation of transferring reinforcement learning for DC-DC buck converter control via duty ratio mapping, IEEE Transactions on Industrial Electronics, 2023, 70(6): 6141-6150.

[15]Wang X, Dong X, Niu X, Zhang C*, Cui C, Huang J, Lin P. Towards balancing dynamic performance and system stability for DC microgrids: A new decentralized adaptive control strategy, IEEE Transactions on Smart Grid, 2022, 13(5): 3439-3451.

[16]Cui C, Yan N, Huangfu B, Yang T, Zhang C*. Voltage regulation of DC-DC buck converters feeding CPLs via deep reinforcement learning, IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3):1777-1781.

[17]Zhang M, XuQ, Zhang C*, Nordstrom L, Blaabjerg F. Decentralized coordinationand stabilization of hybrid energy storage systems in DC microgrids, IEEE Transactions onSmart Grid, 2022, 13(3): 1751-1761.

[18]Lin P, Zhang C, Zhang X*, Herbert Ho, Yang Y, Blaabjerg F. Finite-time large signal stabilization for high power DC microgrids with exact offsetting of destabilizing effects. IEEE Transactions on Industrial Electronics, 2021, 68(5):4014-4026.

[19]Lin P, Jiang W, Wang J, Zhang C*, Wang P. Toward Large signal stabilization of floating dual boost converter powered DC microgrids feeding constant power loads, IEEE Journal of Selecting and Emerging Topics in Power Electronics, 2021, 9(1): 2168-6777.

[20]Zhang C, Wang X, Lin P, Peter X Liu*, Yan Y, Yang J. Finite-time feedforward decoupling and precise decentralized control for DC microgrids towards large signal stability. IEEE Transactions on Smart Grid, 2020, 11(1): 391-402.

[21]Xu Q, Yan Y, Zhang C*, Dragicevic T, Blaabjerg F. An offset-free composite model predictive control strategy for DC/DC buck converter feeding constant power loads. IEEE Transactions on Power Electronics, 2020, 35(5): 5331-5342.

[22]Xu X, Liu Q, Zhang C, Zeng Z*. Prescribed performance controller design for DC converter system with constant power loads in DC microgrid, IEEE Transactions on Systems, Man and Cybernetics: Systems, 2020, 50(11):4339-4348.

[23]Lin P, Zhang C*, Wang P. On autonomous large signal stabilization for islanded multi-bus DC microgrids: A uniform nonsmooth control scheme, IEEE Transactions on Industrial Electronics, 2020, 67(6): 4600-4612.

[24]Xu Q, Xu Y, Zhang C*, Wang P. A droop-based autonomous controller for decentralized power sharing in DC microgrid considering large signal stability. IEEE Transactions on Industrial Informatics, 2020, 16(3): 1483-1494.

[25]Xu Q, Jiang W, Blaabjerg F, Zhang C, Zhang X*, Fernando T. Backstepping control for large signal stability of high boost ratio interleaved interfaced DC microgrids with constant power loads. IEEE Transactions on Power Electronics, 2020, 35(5): 5397-5407.

[26]Lin P, Jiang W, Tu P, Jin C, Zhang C*, Wang P. Self-disciplined large signal stabilizer design for hybrid energy storage system in renewable DC power systems. IEEE Transactions on Sustainable Energy, 2020, 11(4):2345-2355.

[27]Xu Q, Zhang C, Xu Z*, Wang P. A composite finite-time controller for decentralized power sharing and stabilization of hybrid fuel cell/supercapacitor system with constant power load, IEEE Transactions on Industrial Electronics, 2020, 68(2): 1388-1400.

[28]Xu Q, Zhang C*, Wen C, Wang P. A novel composite nonlinear controller for stabilization of constant power load in DC microgrid. IEEE Transactions on Smart Grid, 2019, 10(1):752-761.

[29]Lin P, Zhang C*, Wang P. Xiao J. A decentralized composite controller for unified voltage control with global system large-signal stability in DC microgrids. IEEE Transactions on Smart Grid. 2019, 10(5): 5075-5091.

[30]Lin P, Wang P*, Jin C, Xiao J, Li X, Guo F, Zhang C. A distributed power management strategy for multi-paralleled bidirectional interlinking converters in hybrid AC/DC microgrids. IEEE Transactions on Smart Grid. 2019, 10(5): 5696-5711.

[31]Wang J, Zhang C, Li S*, Li Q, Yang J. Finite-time output feedback control for PWM-based DC-DC buck power converters of current sensor-less mode. IEEE Transactions on Control Systems Technology, 2017, 25(4): 1359-1371.

[32]Zhang C, Wang J, Li S*, Wu B, Qian C. Robust control for PWM-based DC-DC buck power converters with uncertainty via sampled-data output feedback. IEEE Transactions on Power Electronics, 2015, 30(1): 504-515.

[33]Peng Y, Xia F, Zhang C, Mao J. Deformation feature extraction and double attention feature pyramid network for bearing surface defects detection, 2024, IEEE Transactions on Industrial Informatics, published online.

[34]Han L, Mao J*, Zhang C. A systematic trajectory tracking framework for robot manipulators: An observer-based non-smooth control approach, IEEE Transactions on Industrial Electronics, 2024, published online.

[35]Cao Z, Mao J*, Dong X, Zhang C, Yang J. Composite generalized dynamic predictive control with a self-tuning horizon for wide-range speed regulation of PMSM drives. IEEE Transactions on Energy Conversion, 2024, 39(1): 659-674.

[36]Zhu T, Mao J*, Han L, Zhang C, Yang J. Real-time dynamic obstacle avoidance for robot manipulators based on cascaded nonlinear MPC with artificial potential field. IEEE Transactions on Industrial Electronics, 2023, published online.

[37]Huang J, Mao J*, Dong X, Mei K, Madonski R, Zhang C. Cascaded generalized super-twisting observer design for sensorless PMSM drives. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2023, DOI=10.1109/TCSII.2023.3296625.

[38]Yan Y, Zhang C, Yang J, Liu C, Li S*. Disturbance rejection for nonlinear uncertain systems with output measurement errors: Application to a helicopter model. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3133-3144.

[39]Zhang C, Yan Y, Wen C, Yang J, Yu H*. A nonsmooth composite control design framework for nonlinear systems with mismatched disturbances: Algorithms and experimental Tests. IEEE Transactions on Industrial Electronics, 2018, 65(11): 8828-8839.

[40]Zhang C, Yan Y, Ashwin Narayan, Yu H*. Practically oriented finite-time control design and implementation: Application to series elastic actuator. IEEE Transactions on Industrial Electronics, 2018, 65(5):4166-4176.

[41]Yan Y, Zhang C, Ashwin Narayan, Yang J, Li S, Yu H*. Generalized dynamic predictive control for non-parametric uncertain systems with application to series elastic actuators. IEEE Transactions on Industrial Informatics, 2018,14(11): 4829-4840.

[42]Yan Y, Yang J, Sun Z, Zhang C, Li S*, Yu H. Robust speed regulation for PMSM servo system with multiple sources of disturbances via an augmented disturbance observer. IEEE/ASME Transactions on Mechatronics, 2018, 23(2):769-780.

Ø  荣誉奖项

2023年 上海市自动化学会优秀青年科技工作者

2022年 上海市课程思政教学名师

2022年 中国自动化学会自然科学奖二等奖,复杂非线性系统的高阶滑模控制理论,排名第二

2021年 上海市首届教师创新教学大赛地方高校正高组三等奖及优秀基层教学组织奖

2019年 上海市高校特聘教授(东方学者)

2015年 中英联合创新基金(牛顿基金)
科研项目:

[1] 国家自然科学基金重点项目: 区域能源互联网的分布式协同控制与智能决策,合作单位课题负责人,282万元,在研

[2] 国家自然科学基金面上项目:基于齐次系统理论的非递归控制方法与应用研究,57万元,在研

[3] 上海市科委启明星计划:特征模型条件下的直流微电网复合控制与优化研究,40万元,已结题

[4] 上海市高校东方学者特聘教授计划:先进非线性控制理论及应用,100万元,已结题

[5] 上海市自然科学基金:趋于大信号稳定性的直流微电网非线性控制技术研究,20万元,已结题

[6] 国家自然科学基金青年基金:不确定非线性系统的齐次控制理论及应用研究,24万元,已结题

[7] 上海市教委晨光计划:面向电力电子变换器的主动抗干扰控制研究,6万元,已结题

[8] 上海市科委扬帆计划:面向新能源的DC-DC变换器高效控制研究,10万元,已结题